
Introduction
Description
wesCommonLibrary is an Active X Automation server. It is intended to provide Visual
Basic 4.0 developers commonly needed functionality beyond that provided by Visual
Basic for Applications (VBA).

The library is provided in the form of a 32-bit dynamic link library (DLL). The server was
developed in Visual Basic 4.0 and has been tested with Visual Basic 4.0 clients.

Classes
The library consists of two public classes:

Application
Library
Application objects are createable by the server's clients. Library objects are created
through the Library method of the Application class.

Reference
About
History
License
Registration
Support
Trademarks
West End Software

Application Class
Properties
Methods
Application objects are createable by the server's clients. They are the only externally
createable objects in the server and provide an entry point into the server.

Library objects are created through the Library method of the Application class. Once a
client has created an Library object, it may release the Application object immediately if
it will not need to create additional Library objects.

Application Class Properties
ClassName Property
LicenseNumber Property
UserName Property
Version Property

ClassName Property
Returns the class name of an object.

Syntax
object.ClassName

The ClassName property syntax has these parts:

Part Description
object Application object
Remarks
The ClassName property returns "Application" for an Application object and "Library" for
an Library object.

Example
Debug.Print Library.ClassName

' displays: Library

LicenseNumber Property
See also:

UserName Property
Registration
Returns or sets the license number for a registered copy of the server.

Syntax
object.LicenseNumber [= number]

The License property syntax has these parts:

Part Description
object Application object
number License number
Remarks
Registered users of server receive a license number and user name. Although
unregistered copies of the server are fully functional, a modal message box is displayed
each time a Library object is created. Setting the LicenseNumber and UserName
properties with valid values prior to instantiating Library objects eliminates the modal
message box.

The LicenseNumber property returns 0 until it has been set. Setting an invalid license
number will not raise an error.

UserName Property
See also:

LicenseNumber Property
Registration
Returns or sets the user name for a registered copy of the server.

Syntax
object.UserName [= string]

The UserName property syntax has these parts:

Part Description
object Application object
string User name
Remarks
Registered users of the server receive a license number and user name. Although
unregistered copies of the server are fully functional, a modal message box is displayed
each time an Error object is created. Setting the LicenseNumber and User Name
properties with valid values prior to instantiating Error objects eliminates the modal
message box.

The UserName property returns and empty string until it has been set. Setting an invalid
user name will not raise an error.

Registration
LicenseNumber Property
UserName Property
wesCommonLibrary can be registered for US$29. Registration is available through
several sources:

1. On CompuServe, use the Shareware Registration service (GO SWREG), Registration ID
14769. The registration fee is charged to your CompuServe account.

2. On the World Wide Web, set your browser to

http://www.thecave.com/wesoft/

and follow the ordering directions. The registration fee can be charged to any major
credit card via PsL, a credit card order service.

3. Complete the order form in Order.txt and fax it to PsL at 713-524-6398. The
registration fee can be charged to any major credit card.

Important: These services are for REGISTRATION ONLY. Please see the Support section
below for all other correspondence.

Registered users of wesCommonLibrary receive a license number and user name via
electronic mail, or via postal mail if no electronic mail address is provided. Although
unregistered copies of wesCommonLibrary are fully functional, a modal message box is
displayed each time an Library object is instantiated. Setting the LicenseNumber and
UserName properties of the Application object with valid values prior to instantiating
Library objects eliminates the modal message box.

Version Property
Returns the version of the server.

Syntax
object.Version

The Version property syntax has these parts:

Part Description
object Application object
Remarks
The version is returned in the format:
      Major.Minor.Revision

Application Class Methods
Library Method

Library Method
See also:

LicenseNumber Property
UserName Property
Registration
Returns a new instance of a Library object.

Syntax
object.Library

The Library method syntax has these parts:

Part Description

object Application object
Remarks
Registered users of thje server receive a license number and user name. Although
unregistered copies of the server are fully functional, a modal message box is displayed
each time a Library object is created. Setting the LicenseNumber and UserName
properties with valid values prior to instantiating Library objects eliminates the modal
message box.

Library Class
Properties
Methods
Overview
The methods of the Library class provide the functionality of the Visual Basic 4.0
Common Library.

Typically, Visual Basic applications would create a single instance of the Library class.
The Library object would either be public or a property of a public "system" object.

Examples
Public Library Object
A well-architected Visual Basic application should start with Sub Main. A simple main
code module could have the following structure:

Option Explicit

' public variables
Public Library as wesCommonLibrary.Library

Public Sub Main()

 ' the application starts here

 ' display the splash screen

 ' create the public library object
 Dim oApp as wesCommonLibrary.Application
 Set oApp = New wesCommonLibrary.Application
 oApp.UserName = "User Name"
 oApp.LicenseNumber = 1234567890
 Set Library = oApp.Library
 Set oApp = Nothing

 ' perform other startup activities here

 ' hide the splash screen and
 ' show the main form here

End Sub

Public Sub Shutdown()

 ' the application ends here when
 ' called by the Unload event
 ' of the main form

 ' destroy the public library object
 Set Library = Nothing

 ' do other shutdown activities here

End Sub
The library could then be called in all classes, forms, and code modules in the
application with the syntax:

 Library.methodname

Library Object as Property of Public "System" Object
Using a public "Application" object, a simple main code module could have the following
structure:

Option Explicit

' public variables
Public Application as Application

Public Sub Main()

 ' the application starts here

 ' display the splash screen

 ' create the public Application object
 Set Application = New Application

 ' perform other startup activities here

 ' hide the splash screen and
 ' show the main form here

End Sub

Public Sub Shutdown()

 ' the application ends here when
 ' called by the Unload event
 ' of the main form

 ' destroy the public Application object
 Set Application = Nothing

 ' do other shutdown activities here

End Sub

A simple class module for the Application class could have the following structure:

Option Explicit

' public properties
Public Library as wesCommonLibrary.Library

Private Sub Class_Initialize()

 ' create the public library object
 Dim oApp as wesCommonLibrary.Application
 Set oApp = New wesCommonLibrary.Application
 oApp.UserName = "User Name"
 oApp.LicenseNumber = 1234567890
 Set Library = oApp.Library
 Set oApp = Nothing

 ' perform other class initialization
 ' activities here

End Sub

Private Sub Class_Terminate()

 ' destroy the public library object
 Set Library = Nothing

 ' do other class destruction
 ' activities here

End Sub

The library could then be called in all classes, forms, and code modules in the
application with the syntax:

 System.Library.methodname

Library Class Properties
ClassName Property

Library Class Methods
Assert
BooleanToYesNo
CenterWindow
ChangeDriveDir
ClearMaskedText
ClipCursor
ConvertSeconds
CreateDirectory
DelTree
DoubleQuoteString
DoubleSingleQuotes
GetToken
HiWord
IsDateEntry
IsLeapYear
IsNumericEntry
LengthLongestWord
ListComboIndexByItemData
ListIndexByText
LongestWord
LoWord
MakeDWord
Max
Min
MultiListAnySelected
MultiListRemoveSelected
MultiListSelectAll
MultiListUnselectAll
NullToNumeric
NullToString
NullTrim
OutlineItemByText
PadLeft
PadRight
ParseDate
ParsePath
QuoteString
ReplaceString
RInstr
Round
SelectText
SetRedraw
SetTopMost
SmartBeep
SplitName
Swap
UniqueFileName
UnloadAllForms

WindowsPath
WindowsSystemPath
YesNoToBoolean

Assert Method
Tests an assertion, displaying a message box if it fails.

Syntax
object.Assert Condition, Message

The Assert method has these parts:

Part Description

object Library object
Condition Boolean expression representing condition
Message String message
Remarks
Assertions are usually used in conditional code during debugging. The message can be
either a statement of the condition or an exception statement.

Example
#If DebugMode Then
 Library.Assert nHeight > 0, "Height is positive."
#End If

BooleanToYesNo Method
See also:

YesNoToBoolean Method
Returns a "Yes" or "No" string equivalent to a Boolean value.

Syntax
object.BooleanToYesNo(Value)

The BooleanToYesNo method has these parts:

Part Description

object Library object
Value Boolean expression
Remarks
BooleanToYesNo determines the string equivalent based on the following table:

 Value Returns

 True Yes
 False No

Example
Debug.Print _
 Library.BooleanToYesNo(True)

' displays: Yes

YesNoToBoolean Method
See also:

BooleanToYesNo Method
Returns the Boolean equivalent of a string expression.

Syntax
object.YesNoToBoolean(Value)

The YesNoToBoolean method has these parts:

Part Description

object Library object
Value String expression
Remarks
YesNoToBoolean determines the boolean equivalent based on the following table:

 Expression Return Value

 N False
 No False
 Y True
 Yes True

False is returned for any string expression not found in the table.    The expression check
is not case sensitive.

Example
Debug.Print _
 Library.YesNoToBoolean("Yes")

' displays: True

CenterWindow Method
Centers a window within another window or within the screen.

Syntax
object.CenterWindow ChildWindow[, ParentWindow]

The CenterWindow method has these parts:

Part Description

object Library object
ChildWindow Required. Object (window) to be centered
ParentWindow Optional. Object (window) on which Child
centering will be based
Remarks
The child window will will be centered over the parent window if a parent window is
specified. It will be centered on the scrren otherwise.

The left border of the child window will be placed on the left edge of the screen if
centering it would cause the left border of the child to be off the screen. The same
adjustment applies to the top border of the form and the top edge of the screen.

Both theChildWindow and ParentWindow objects must have Left, Top, Width, and Height
properties. The ChildWindow object must have a Move method.

Example
Dim frmParent As Form1
Set frmParent = New Form1
frmParent.Show

Dim frmChild As Form2
Set frmChild = New Form2

Library.CenterWindow frmChild, _
 frmParent

frmChild.Show

ChangeDriveDir Method
Changes the default drive and directory (folder).

Syntax
object.ChangeDriveDir Path

The ChangeDriveDir method has these parts:

Part Description

object Library object
Path String path
Remarks
The ChangeDriveDir method has the same result as using the ChDrive statement,
followed by the ChDir statement.

Example
Library.ChangeDriveDir "c:\temp"
Debug.Print CurDir

' returns: C:\TEMP

ClearMaskedText Method
Clears the text from a Microsoft MaskedEditBox control.

Syntax
object.ClearMaskedText MaskedEditBox

The ClearMaskedText method has these parts:

Part Description

object Library object
MaskedEditBox Microsoft MaskedEditBox control
Remarks
The ClearMaskedText method clears the text from the control, preserving the mask.

Example
Library.ClearMaskedText mskStartDate

ClipCursor Method
Restricts cursor to the confines of a form or control or releases previous restriction.

Syntax
object.ClipCursor [Window]

The ClipCursor method has these parts:

Part Description

object Library object
Window Optional. Form or control
Remarks
Calling the ClipCursor method with the optional argument restricts the cursor to the
confines of the specified form or control. Calling the method without an agrument
releases the restriction.

The ClipCursor method does not work with "lightweight" VB controls such as Labels.

Example
Library.ClipCursor frmGotcha

ConvertSeconds Method
Converts a specified number of seconds into days, hours, minutes, and seconds.

Syntax
object.ConvertSeconds TotalSeconds, Seconds, Minutes[, Hours[, Days]]

The ConvertSeconds method has these parts:

Part Description

object Library object
TotalSeconds Required. Long expression equalling
 number of seconds
Seconds Required. Integer converted seconds
Minutes Required. Integer converted minutes
Hours Optional. Integer converted hours
Days Optional. Integer converted days
Remarks
The maximum return value for the Seconds and Minutes arguments is 60.
The ConvertSeconds method will discard excess seconds if the Hours or Days arguments
are not provided.

Example
Dim nSeconds As Integer
Dim nMinutes As Integer
Dim nHours As Integer
Dim nDays As Integer
Library.ConvertSeconds _
 12345, nSeconds, nMinutes, nHours, nDays
Debug.Print nSeconds, nMinutes, nHours, nDays

' displays: 45 25 3 0

CreateDirectory Method
Creates a directory (folder).

Syntax
object.CreateDirectory(Directory)

The CreateDirectory method has these parts:

Part Description

object Library object
Directory String directory name
Remarks
CreateDirectory creates a directory only if it does not exist, avoiding the error from
MkDir.

Example
Library.CreateDirectory "c:\test"

DelTree Method
Deletes a directory (folder) and all of its contents.

Syntax
object.Deltree Directory

The DelTree method has these parts:

Part Description

object Library object
Directory String directory name
Remarks
The DelTree method works the same as the DOS DelTree command.

Example
Library.DelTree "C;\junk"

DoubleQuoteString Method
See also:

QuoteString Method
Returns a string, based on a source string surrounded with the double quote character.

Syntax
object.DoubleQuoteString(Source)

The DoubleQuoteString method has these parts:

Part Description

object Library object
Source String expression to be enclosed
 in double quotes
Remarks
The source string is not changed.

Example
Dim sName As String
sName = "Fred"

Debug.Print _
 Library.DblQuoteString(sName)

' displays: "Fred"

QuoteString Method
See also:

DoubleQuoteString Method
Returns a string, based on a source string surrounded with the single quote character.

Syntax
object.QuoteString(Source)

The QuoteString method has these arguments:

Part Description

object Library object
Source String expression
Remarks
The source string is not changed.

Example
Dim sName As String
sName = "Fred"

Debug.Print _
 Library.QuoteString(sName)

' displays: 'Fred'

DoubleSingleQuotes Method
Returns a string, based on a source string with single quotes replaced with two single
quotes.

Syntax
object.DoubleSingleQuote(Source)

The DoubleSingleQuote method has these parts:

Part Description

object Library object
Source String expression
Remarks
This method is useful for preparing strings for use in SQL statements. The source string
is not changed.

Example
Debug.Print _
 Library.DoubleSingleQuote("He's back!")

' displays: He''s back!

GetToken Method
Returns the first token from the source string.

Syntax
object.GetToken(Source,    Delimiter)

The GetToken method has these parts:

Part Description

object Library object
Source Source string
Delimiter String delimiter expression
Remarks
The token and the delimiter are stripped from the source in the process.

Example
Dim sSource As String
sSource = "Just do it"
Dim sToken As String
sToken = Library.GetToken(sSource, " ")
Debug.Print sSource, sToken

' displays: do it Just

HiWord, LoWord Methods
See also:

MakeDWord Method
Returns the integer "high word" or "low word" portion of a long "double word."

Syntax
object.HiWord(DWord)

object.LoWord(DWord)

The HiWord and LoWord methods have these parts:

Part Description

object Library object
DWord Long value
Remarks
The HiWord and LoWord methods correctly handles all Visual Basic integers (-32768 to
32767).

Example
Debug.Print Library.HiWord(1234567890),_
 Library.LoWord(1234567890)

' displays: 18838 722

MakeDWord Method
See also:

HiWord, LoWord Methods
Returns the long "double word" created from integer "high word" and "low word" values.

Syntax
object.MakeDWord(LoWord, HiWord)

The MakeDWord method has these parts:

Part Description

object Library object
LoWord Integer value
HiWord Integer value
Remarks
TheMakeDWord method correctly handles all Visual Basic integers (-32768 to 32767).

Example
Debug.Print Library.MakeDWord(722, 18838)

' displays: 1234567890

IsDateEntry Method
See also:

IsNumericEntry Method
Returns a Boolean value indicating if a key press is valid for a date entry.

Syntax
object.IsDateEntry(KeyAscii)

The IsDateEntry method has these parts:

Part Description

object Library object
KeyAscii Integer key press value
Remarks
Valid key presses are digits, slash, and navigation keys. IsDateEntry does not check for
valid date formats and does not validate the entry as a date ("99/99/99" will be
accepted).

Example
' form module
Private Sub Text1_KeyPress(KeyAscii As Integer)
 If Not Library.IsDateEntry(KeyAscii) Then
 KeyAscii = 0
 Beep
 End If
End Sub

IsNumericEntry Method
See also:

IsDateEntry Method
Returns a Boolean value indicating if a key press is valid for a numeric entry.

Syntax
object.IsNumericEntry(KeyAscii)

The IsNumericEntry method has these parts:

Part Description

object Library object
KeyAscii Integer key press value
Remarks
Valid key presses are digits, decimal, plus, minus, and navigation keys.

Example
' form module
Private Sub Text1_KeyPress(KeyAscii As Integer)
 If Not Library.IsNumericEntry(KeyAscii) Then
 KeyAscii = 0
 Beep
 End If
End Sub

IsLeapYear Method
Returns a Boolean value indicating whether a year is a leap year.

Syntax
object.IsLeapYear(Year)

The IsLeapYear method has these parts:

Part Description

object Library object
Year Four-digit integer year
Remarks
The Year argument must be a four-digit year, such as 1996.

Example
Debug.Print Library.IsLeapYear(1996)

' displays: True

LengthLongestWord Method
See also:

LongestWord Method
Returns the integer length of the longest word in a string.

Syntax
object.LengthLongestWord(Source[, Delimiter])

The LengthLongestWord method has these parts:

Part Description

object Library object
Source Required. String expression
Delimiter Optional. Single character used
 to delimit words
Remarks
The LengthLongestWord method returns 0 for empty strings. The delimiter defaults to a
space if it is not specified.

Example
Debug.Print _
 Library.LengthLongestWord("This is a test.")

' displays: 4

LongestWord Method
See also:

LengthLongestWord Method
Returns a string representing the longest word in a source string.

Syntax
object.LongestWord(Source[, Delimiter])

The LongestWord method has these parts:

Part Description

object Library object
Source Required. String expression
Delimiter Optional. Single character used
 to delimit words
Remarks
The LongestWord method returns an empty string for empty source strings. If there is a
tie for the longest word, the word closest to the beginning of the source string is
returned. The delimiter defaults to a space if it is not specified.

Example
Debug.Print _
 Library.LongestWord("This is a test.")

' displays: This

ListComboIndexByItemData Method
See also:

ListIndexByText Method
OutlineItemByText Method
Returns the ListIndex value for the first item in a ListBox or ComboBox control with its
ItemData property equal to the specified value.

Syntax
object.ListComboIndexByItemData(ListCombo, Value)

The ListComboIndexByItemData method has these parts:

Part Description

object Library object
ListCombo Object (ListBox or ComboBox control)
Value Long value
Remarks
The ListCombo object must have an ItemData collection and a ListCount property. The
ListComboIndexByItemData will return the index in the ItemData collection containing
the value to find. If no match is found, -1 is returned.

Example
Form1.List1.AddItem "Fred"
Form1.List1.ItemData(Form1.List1.NewIndex) = 1234
Form1.List1.AddItem "Barney"
Form1.List1.ItemData(Form1.List1.NewIndex) = 2345
Form1.List1.AddItem "Wilma"
Form1.List1.ItemData(Form1.List1.NewIndex) = 3456
Form1.List1.AddItem "Betty"
Form1.List1.ItemData(Form1.List1.NewIndex) = 4567

Debug.Print _ Library.ListComboIndexByItemData(Form1.List1, 1234)

' displays: 2
nPatientIndex = _
 Library.ListComboIndexByItemData(lstPatients, 123456)
lstPatients.ListIndex = nPatientIndex

ListIndexByText Method
See also:

ListComboIndexByItemData Method
OutlineItemByText Method
Returns the ListIndex value for the first item in ListBox control with its Text property
equal to the specified value.

Syntax
object.ListIndexByText(ListBox, Text[, Start])

The ListIndexByText method has these parts:

Part Description

object Library object
ListBox Required. Object (ListBox control)
Text Required. String expression to find
Start Optional. Integer value specifying the
 ListIndex property of the starting item
Remarks
The ListIndexByText method returns -1 if the Text value is not found. The search starts at
the first item is the Start argument is missing. The search stops when the first instance
of Text is found. The search is case sensitive and considers trailing spaces.

Example
Dim nPatientIndex as Integer
nPatientIndex = _
 Library.ListIndexByText(lstPatients, "Fred")
lstPatients.ListIndex = nPatientIndex

OutlineItemByText Method
See also:

ListIndexByText Method
ListComboIndexByItemData Method
Returns the ListIndex value for the first item in an Outline control with its Text property
equal to the specified value.

Syntax
object.ListIndexByText(Outline, Text[, Start])

The OutlineItemByText method has these parts:

Part Description

object Library object
Outline Required. Object (Outline control)
Text Required. String expression to find
Start Optional. Integer value specifying the
 ListIndex property of the starting item
Remarks
The Outline object must have a List collection and a ListCount property.

The OutlineItemByText method returns -1 if the Text value is not found. The search starts
at the first item is the Start argument is missing. The search stops when the first
instance of Text is found. The search is case sensitive and considers trailing spaces.

Example
Form1.Outline1.AddItem "Flintstone"
Form1.Outline1.AddItem "Fred"
Form1.Outline1.Indent(1) = 2
Form1.Outline1.AddItem "Wilma"
Form1.Outline1.Indent(2) = 2
Form1.Outline1.AddItem "Rubble"
Form1.Outline1.AddItem "Barney"
Form1.Outline1.Indent(4) = 2
Form1.Outline1.AddItem "Betty", 5
Form1.Outline1.Indent(5) = 2

Debug.Print _
 Library.FindOutlineItemByText(Form1.Outline1, _
 "Wilma")

' displays: 2

Max, Min Methods
Returns a variant equal to the maximum or minimum of two values.

Syntax
object.Min(FirstValue, SecondValue)
object.Max(FirstValue, SecondValue)

The Max and Min methods have these parts:

Part Description

object Library object
FirstValue Variant expression compared to SecondValue
SecondValue Variant expression compared to FirstValue
Example
Debug.Print Library.Max(1, 2), _
 Library.Min(1, 2)

' displays: 2 1

MultiListAnySelected Method
See also:

MultiListRemoveSelected Method
MultiListSelectAll Method
MultiListUnselectAll Method
Returns a Boolean value indicating whether any items are selected in a multi-select list
control.

Syntax
object.MultiListAnySelected(MultiSelectControl)

The MultiListAnySelected method has these parts:

Part Description

object Library object
MultiSelectControl Object (multi-select list control)
Remarks
MultiListAnySelect will return True if any list items are selected.    Otherwise, False is
returned.

The MultiSelectControl object must have a Selected collection and a ListCount property.

Example

' form module
Option Explicit

Private Sub cmdRemove_Click()
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
 Library.MultiListRemoveSelected lstPeople
 If lstPeople.ListCount = 0 Then
 cmdSelectAll.Enabled = False
 End If
End Sub

Private Sub cmdSelectAll_Click()
 Library.MultiListSelectAll lstPeople
End Sub

Private Sub cmdUnselectAll_Click()
 Library.MultiListUnselectAll lstPeople
End Sub

Private Sub Form_Load()
 lstPeople.AddItem "Fred"
 lstPeople.AddItem "Barney"
 lstPeople.AddItem "Wilma"
 lstPeople.AddItem "Betty"
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
End Sub

Private Sub lstPeople_Click()
 If Library.MultiListAnySelected(lstPeople) Then
 cmdRemove.Enabled = True
 cmdUnselectAll.Enabled = True
 Else
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
 End If
End Sub

MultiListRemoveSelected Method
See also:

MultiListAnySelected Method
MultiListSelectAll Method
MultiListUnselectAll Method
Removes any selected list items from a multi-select list control.

Syntax
object.MultiListRemoveSelected(MultiSelectControl)

The MultiListRemoveSelected method has these parts:

Part Description

object Library object
MultiSelectControl Object (multi-select ListBox control)
Remarks
The MultiSelectControl object must have a Selected collection, a ListCount property, and
a RemoveItem method.

Example

' form module
Option Explicit

Private Sub cmdRemove_Click()
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
 Library.MultiListRemoveSelected lstPeople
 If lstPeople.ListCount = 0 Then
 cmdSelectAll.Enabled = False
 End If
End Sub

Private Sub cmdSelectAll_Click()
 Library.MultiListSelectAll lstPeople
End Sub

Private Sub cmdUnselectAll_Click()
 Library.MultiListUnselectAll lstPeople
End Sub

Private Sub Form_Load()
 lstPeople.AddItem "Fred"
 lstPeople.AddItem "Barney"
 lstPeople.AddItem "Wilma"
 lstPeople.AddItem "Betty"
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
End Sub

Private Sub lstPeople_Click()
 If Library.MultiListAnySelected(lstPeople) Then
 cmdRemove.Enabled = True
 cmdUnselectAll.Enabled = True
 Else
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
 End If
End Sub

MultiListSelectAll, MultiListUnselectAll Methods
See also:

MultiListAnySelected Method
MultiListRemoveSelected Method
Select or unselects all items in a multi-select list control.

Syntax
object.MultiListSelectAll(MultiSelectControl)

object.MultiListUnselectAll(MultiSelectControl)

The MultiListSelectAll and MultiListUnselectAll methods have these parts:

Part Description

object Library object
MultiSelectControl Object (multi-select list control)
Remarks
The MultiSelectControl object must have a Selected collection and hWnd, ListCount, and
TopIndex properties.

Example

' form module
Option Explicit

Private Sub cmdRemove_Click()
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
 Library.MultiListRemoveSelected lstPeople
 If lstPeople.ListCount = 0 Then
 cmdSelectAll.Enabled = False
 End If
End Sub

Private Sub cmdSelectAll_Click()
 Library.MultiListSelectAll lstPeople
End Sub

Private Sub cmdUnselectAll_Click()
 Library.MultiListUnselectAll lstPeople
End Sub

Private Sub Form_Load()
 lstPeople.AddItem "Fred"
 lstPeople.AddItem "Barney"
 lstPeople.AddItem "Wilma"
 lstPeople.AddItem "Betty"
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
End Sub

Private Sub lstPeople_Click()
 If Library.MultiListAnySelected(lstPeople) Then
 cmdRemove.Enabled = True
 cmdUnselectAll.Enabled = True
 Else
 cmdRemove.Enabled = False
 cmdUnselectAll.Enabled = False
 End If
End Sub

NullToNumeric Method
See also:

NullToString Method
Returns a numeric variant equal to the source value, if numeric, or 0 otherwise.

Syntax
object.NullToNumeric(Source)

The NullToNumeric method has these parts:

Part Description

object Library object
Source Variant value
Remarks
NullToNumeric returns a numeric variant 0 if the sourve value is Null or any other non-
numeric value. Otherwise, it returns the original value as a numeric variant.

Example
Dim vNull As Variant
vNull = Null

Debug.Print _
 Library.NullToNumeric(vNull)

' displays: 0

NullToString Method
See also:

NullToNumeric Method
Returns a string equal to the source value, if not Null, or an empty string otherwise.

Syntax
object.NullToString(Source)

The NullToString method has these parts:

Part Description

object Library object
Source Variant value
Remarks
NullToString returns a empty string if the sourve value is Null. Otherwise, it returns the
original value as a string.

Example
Dim vNull As Variant
vNull = Null

Debug.Print _
 "(" & Library.NullToString(vNull) & ")"

' displays: ()

NullTrim Method
Returns a string, based on a source string with all trailing Null characters (Chr$(0))
removed.

Syntax
object.NullTrim(Source)

The NullTrim method has these parts:

Part Description

object Library object
Source String expression
Remarks
Embedded Null characters are not changed or removed. The source string is not
changed.

Example
Dim sTest As String
sTest = "Fred" & Chr$(0)

Debug.Print _
 Len(Library.NullTrim(sTest))

' displays: 4

PadLeft, PadRight Methods
Return strings, based on a source string padded with a specified character to a specified
length.

Syntax
object.PadLeft(Source, Length, [PadChar])
object.PadRight(Source, Length, [PadChar])

The PadLeft and PadRight methods have these parts:

Part Description

object Library object
Source Required. String expression to be padded
Length Required. Integer length of the padded
 string expression
PadChar Optional. String expression whose first
 character is used to pad the return string
Remarks
PadLeft will pad the character(s) to the left, or beginning, of the source string.    PadRight
will pad the character(s) to the right, or end, of the source string. If the source string is
longer than the specified length, the returned string is truncated on the appropriate
side.

If PadChar is missing, the string will be padded with spaces (Chr$(32)).

The source string is not changed.

Example
Dim sTest As String
sTest = "Fred"

Debug.Print _
 Library.PadLeft(sTest, 10, "*")

' displays: ******Fred

Debug.Print _
 Library.PadRight(sTest, 10, "*")

' displays: Fred******

ParseDate Method
Parses a date expression into month, day, and year components.

Syntax
object.ParseDate Source, Month, Day, Year

The DateParse method has these parts:

Part Description

object Library object
Source Variant expression representing a date
Month Two-digit string expression
Day Two-digit string expression
Year Two-digit string expression

Example
Dim sMonth As String
Dim sDay As String
Dim sYear As String

Library.ParseDate "12/25/96", sMonth, _
 sDay, sYear
Debug.Print sMonth, sDay, sYear

' displays: 12 25 96

ParsePath Method
Parses a path into drive, folder (directory), and document (file) components.

Syntax
object.ParsePath Path, Drive, Folder, Document

The ParsePath method has these parts:

Part Description

object Library object
Path String path
Drive String drive
Folder String folder
Document String document
Example
Const TEST_PATH = "c:\windows\win.ini"

Dim sDrive as String
Dim sFolder as String
Dim sDocument as String

Library.ParsePath TEST_PATH, _
 sDrive, sFolder, sDocument
Debug.Print sDrive, sFolder, _
 sDocument

' displays: c: \windows win.ini

ReplaceString Method
Returns a string, based on a source string with all instances of one substring replaced
with a second substring.

Syntax
object.ReplaceString(Source, CurrentString, NewString)

The ReplaceString method has these parts:

Part Description

object Library object
Source String expression
CurrentString String expression to be replaced
NewString String expression that will replace
 CurrentString
Remarks
The source string is not changed.

Example
Dim sTest As String
sTest = "Fred, Fred, and more Fred"

Debug.Print _
 Library.ReplaceString(sTest, "Fred", _
 "Barney")

' displays: Barney, Barney, and more Barney

RInstr Method
Returns the position of the last occurrence of one string within another.

Syntax
object.RInstr(String1, String2 [, Start] [, Compare])

The RInstr method has these parts:

Part Description

object Library object
String1 Required. String expression being searched
String2 Required. String expression sought
Start Optional. Numeric expression that sets the
 starting position for each search
Compare Specifies the type of string
 comparison
Remarks
The search begins at the last character position if the Start argument is omitted.

 The compare argument can be 0 or 1. Specify 0 to perform a    binary comparison.
Specify 1 to perform a textual, case-insensitive comparison. The default value is 0.

Example
Const TEST_SEARCH = "Mississippi"
Const TEST_SOUGHT = "s"

Debug.Print _
 Library.RInstr(TEST_SEARCH, _
 TEST_SOUGHT)

' displays: 7

Round Method
Returns a numeric variant, based on a source value rounded to a value with the
specified number of decimal places.

Syntax
object.Round(Value, DecimalPlaces)

The Round method has these parts:

Part Description

object Library object
Value Variant numeric value
DecimalPlaces Integer number of decimal places
Remarks
Round returns an empty variant for non-numeric values.

Example
Dim fRoundDown As Double
fRoundDown = 0.134
Dim fRoundUp As Double
fRoundUp = 0.136

Debug.Print _
 Library.Round(fRoundDown, 2), _
 Library.Round(fRoundUp, 2)

' displays: 0.13 0.14

SelectText Method
Selects the text in a control.

Syntax
object.SelectText Textbox

The SelectText method has these parts:

Part Description

object Library object
Textbox Object (Textbox control)
Remarks
The control must support the Text, SelStart, and SelLength properties.

Example
' form module
Option Explicit

Private Sub Text1_GotFocus()
 Library.SelectText Text1
End Sub

SetRedraw Method
Enables or disables the drawing of a form or control.

Syntax
object.SetRedraw Window, Redraw

The SetRedraw method has these parts:

Part Description

object Library object
Window Object (form or control)
Redraw Boolean value
Remarks
The object must have an hWnd property. Drawing is disabled if Redraw is False, and is
enabled if Redraw is True.

Disabling drawing while a control such a list box or outline is being loaded will improve
performance and eliminate flickering.

Example
' form module
Option Explicit

Private Sub cmdLoad_Click()
 Library.SetRedraw lstPeople, False
 Dim iPerson As Integer
 For iPerson = 1 To 1000
 lstPeople.AddItem "Person " & _
 CInt(iPerson)
 Next iPerson
 Library.SetRedraw lstPeople, True
End Sub

SetTopMost Method
Assigns or removes topmost status for a window.

Syntax
object.SetTopMost(Window, TopMost)

The SetTopMost method has these parts:

Part Description

object Library object
Window Object (window) to make topmost
TopMost Boolean value
Remarks
The window's topmost status will be set based on the value of TopMost. A window with
topmost status will appear on top of all other windows in the same application, even if
another window has focus.

The window object must have a hWnd property.

Example
' form module
Option Explicit

Private Sub cmdNoTopMost_Click()
 Library.SetTopMost Me, False
End Sub

Private Sub cmdTopMost_Click()
 Library.SetTopMost Me, True
End Sub

SmartBeep Method
Generates the specified sound.

Syntax
object.SmartBeep(SoundType)

The SmartBeep method has these parts:

Part Description

object Library object
SoundType Integer expression
Remarks
The SmartBeep method handles the following sound types:

Constant Value Description

vbCritical 16 Critical Message icon.
vbQuestion 32 Warning Query icon.
vbExclamation 48 Warning Message icon.
vbInformation 64 Information Message icon.
The default system sound will be generated for any other value. Sounds are configured
in the Sounds Control Panel applet.

Example
Library.SmartBeep vbExclamation

SplitName Method
Splits a single-word, aggregated name into components.

Syntax
object.SplitName(Source)

The SplitName method has these parts:

Part Description

object Library object
Source String expression
Remarks
The SplitName method splits an aggregated name, such as variable names and
database table and column names, into its component parts. Uppercase letters are used
to identify the components. The components are return in a string separated by spaces.

Example
Debug.Print Library.SplitName("YabbaDabbaDo")

' displays: Yabba Dabba Do

Swap Method
Trades two values with one another.

Syntax
object.Swap FirstValue, SecondValue

The Swap method has these parts:

Part Description

object Library object
FirstValue Variant value to trade with SecondValue
SecondValue Variant value to trade with FirstValue
Remarks
In addition to trading values between variables, Swap can be also be used to trade
values between the default properties of controls.

Example
Dim vFirst As Variant
vFirst = "First Value"
Dim vSecond As Variant
vSecond = "Second Value"

Library.Swap vFirst, vSecond
Debug.Print vFirst, vSecond

' displays: Second Value First Value

UniqueFileName Method
Returns a string representing a unique file name (document), given a path and an
extension.

Syntax
object.UniqueFileName(Path, Extension)

The UniqueFileName method has these parts:

Part Description

object Library object
Path String path for file
Extension String file extension
Example
Const TMP_PATH = "c:\temp"
Const TMP_EXT = "tmp"

Debug.Print _
 Library.UniqueFileName(TMP_PATH, _
 TMP_EXT)

' displays: c:\temp\15646.tmp

UnloadAllForms Method
Unloads all forms.

Syntax
object.UnloadAllForms(FormsCollection)

The UnloadAllForms method has these parts:

Part Description

object Library object
FormsCollection Object (Forms collection)
Remarks
The UnloadAllForms method returns True if all forms were unloaded. It returns False, and
stops unloading any subsequent forms, if a form cancels the unload message.

The UnloadAllForms method should not be called from code inside a form. It is intended
to be used in object methods and property procedures.

Example
Library.UnloadAllForms Forms

WindowsPath Method
See also:

WindowsSystemPath Method
Returns the Windows path as a string.

Syntax
object.WindowsPath

The WindowsPath method has these parts:

Part Description

object Library object
Remarks
The string returned will not have a trailing backslash.

Example
Debug.Print Library.WindowsPath

' displays: C:\WINDOWS

WindowsSystemPath Method
See also:

WindowsPath Method
Returns the Windows system path as a string.

Syntax
object.WindowsSystemPath

The WindowsSystemPath method has these parts:

Part Description

object Library object
Remarks
The string returned will not have a trailing backslash.

Example
Debug.Print Library.WindowsSystemPath

' displays: C:\WINDOWS\SYSTEM

About
wesCommonLibrary Version 1.0.0
Written for West End Software, Inc.
Copyright © 1997 Michael L. Jones    All Rights Reserved.

Warning: This computer program is protected by copyright law and international
treaties. Unauthorized reproduction or distribution of this program, or any portion of it,
may result in severe civil and criminal penalties, and will be prosecuted to the maximum
extent possible under the law.

History
Version 1.0.0 (3/3/97)
Initial release

License
wesCommonLibrary License Agreement

WEST END SOFTWARE LICENSE AGREEMENT AND LIMITED WARRANTY
West End Software, Inc. ("West End") grants you the right to use this West End software
product ("Software"), including any accompanying documentation, in the manner
provided below.    This Software is owned by West End or its suppliers and is protected by
copyright law and international copyright treaty.

The Software is a "shareware program." A shareware program is a program provided at
no charge to the you for evaluation.    You may share it with others, but you must not
give it away altered or as part of another system.

If you find the Software useful and find that you are using the Software and continue to
use the Software after a reasonable trial period, you must make a registration payment
of US$29 to West End.    The registration fee will license one copy for use on any one
computer at any one time.    You must treat this software just like a book.    An example is
that this software may be used by any number of people and may be freely moved from
one computer location to another, so long as there is no possibility of it being used at
one location while it's being used at another. Just as a book cannot be read by two
different persons at the same time.

Commercial users of the Software must register and pay for their copies of the Software
within 30 days of first use or their license is withdrawn.    Site-License arrangements may
be made by contacting West End.

Anyone distributing the Software for any kind of remuneration must first contact West
End for authorization. This authorization will be automatically granted to distributors
recognized by the (ASP) as adhering to its guidelines for shareware distributors, and
such distributors may begin offering the Software immediately. However, West End must
still be advised so that the distributor can be kept up-to-date with the latest version of
the Software.

If you have purchased a license for the Software, you may transfer the license on a
permanent basis provided you retain no copies of the Software and the recipient agrees
to the terms of this license agreement.    Except as provided in this agreement, you may
not transfer, rent, lease, lend, copy, modify, translate, sublicense, time-share or
electronically transmit or receive the Software or documentation.    You acknowledge that
the Software in source code form remains a confidential trade secret of West End and/or
its suppliers and therefore you agree not to modify the Software or attempt to decipher,
decompile, disassemble or reverse engineer the Software, except to the extent
applicable laws specifically prohibit such restriction.

LIMITED WARRANTY
West End warrants that the Software, as updated and when properly used, will perform
substantially in accordance with the accompanying documentation for a period of thirty
(30) days from the date of registration.    Any implied warranties on the Software are
limited to thirty (30) days.    Some states/jurisdictions do not allow limitations on
duration of an implied warranty, so the above limitation may not apply to you.

West End's and its suppliers' entire liability and your exclusive remedy shall be, at West
End's option, either (a) return of the price paid, or (b) repair or replacement of the
Software that does not meet West End's Limited Warranty. This Limited Warranty is void
if failure of the Software has resulted from accident, abuse, or misapplication. Any
replacement Software will be warranted for the remainder of the original warranty

period.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, WEST END AND ITS
SUPPLIERS DISCLAIM ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO,    IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH REGARD TO THE SOFTWARE AND THE
ACCOMPANYING DOCUMENTATION.    THIS LIMITED WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS.    YOU MAY HAVE OTHERS, WHICH VARY FROM STATE/JURISDICTION TO
STATE/JURISDICTION.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL WEST
END OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS)
ARISING OUT OF THE USE OF OR INABILITY TO USE THIS WEST END PRODUCT, EVEN IF
WEST END HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.    BECAUSE
SOME STATES/JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY
NOT APPLY TO YOU.

HIGH RISK ACTIVITIES
The Software is not fault-tolerant and is not designed, manufactured or intended for use
or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of the Software
could lead directly to death, personal injury, or severe physical or environmental
damage ("High Risk Activities"). West End and its suppliers specifically disclaim any
express or implied warranty of fitness for High Risk Activities.

U.S. GOVERNMENT RESTRICTED RIGHTS
The Software and documentation are provided with RESTRICTED RIGHTS. Use,
duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer
Software-Restricted Rights at 48 CFR 52.227-19, as applicable. Manufacturer is West End
Software, Inc.

GENERAL PROVISIONS
This agreement may only be modified in writing signed by you and an authorized officer
of West End.    If any provision of this agreement is found void or unenforceable, the
remainder will remain valid and enforceable according to its terms.    If any remedy
provided is determined to have failed for its essential purpose, all limitations of liability
and exclusions of damages set forth in the Limited Warranty shall remain in effect.

This agreement shall be construed, interpreted and governed by the laws of the State of
Missouri, U.S.A.    This agreement gives you specific legal rights; you may have others
which vary from state to state and from country to country.    West End reserves all rights
not specifically granted in this agreement.

West End Software, Inc.
wesoft@thecave.com
wesoft@compuserve.com

Support
Questions, comments, and suggestions regarding wesCommonLibrary should be
directed to West End Software, Inc.

CompuServe: Send email to wesoft
Internet: Send email to wesoft@thecave.com

Trademarks
wesCommonLibrary is a trademark of West End Software, Inc.

Microsoft, Windows, and Visual Basic are registered trademarks of Microsoft Corporation.

CompuServe is a registered trademark of CompuServe, Incorporated.

All other brand and product names are trademarks or registered trademarks of their
respective companies.

West End Software
West End Software, Inc. is committed to providing the computing community, both end
users and developers, with quality products.

Other West End products include:

wesError
An Active X server providing application developers with a standard means of handling
errors trapped in a procedure, either displaying the error or raising the error for trapping
and handling in the calling procedure.

wesObjectCache
An Active X server providing application developers with a means of improving
performance by caching Active X objects for reuse, particularly objects that must
retrieve their properties from a database, file, remote data source such as a World Wide
Web site, etc.

Desktop Maid
A desktop utility for Microsoft Windows 95 that resides the the Taskbar tray, allowing you
to hide or show items on your desktop. Desktop Maid also provides easy access to items
on your desktop through a menu, even when they are not visible.

For the latest list of West End products, please visit our web site at

http://www.thecave.com/wesoft/

Thank you for your support!

